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SUMMARY 

A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds 
number is presented. The idea of the upwind technique is based on the choice of upwind and downwind 
points. This scheme can approximate the convection term to third-order accuracy when these points are 
located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure 
Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of 
flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the 
Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the 
latter problem. 
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INTRODUCTION 

In the development of schemes for given problems, we have to pay attention to the stability. The 
stability, however, is not always sufficient for the computation of practical problems. There are 
some problems where other properties may become as important as the stability. In the 
computation of flow problems at high Reynolds numbers the sensitivity with respect to the 
Reynolds number is one of those properties. That is, the scheme is expected to produce solutions 
which show a clear dependence on the Reynolds number. 

As is well known, the Galerkin finite element approximation leads to instability for problems at 
high Reynolds numbers. This is caused by the fact that the derived scheme is a central-difference- 
type approximation to the convection term. Thus the question is how to approximate the 
convection term. Several first-order upwind approximations have been proposed.'-3 They are 
stable but their sensitivity to the Reynolds number is not always good on account of the 
additional viscosity included. In the finite difference field, upwind approximations with third- 
order accuracy have been developed and their good sensitivity to the Reynolds number has been 

Recently, Kondo et aZ.* have presented a finite element scheme with third-order 
upwinding based on the Petrov-Galerkin method.' We refer to Reference 10 for the analysis of 
discontinuous upwind finite element schemes and to References 11 and 12 for the computation 
of high-Reynolds-number flow problems by the streamline upwind/Petrov-Galerkin 
formulation. 13 ,  l4 

In this paper we present a new upwind finite element scheme for the incompressible 
Navier-Stokes equations. Our upwinding technique is based on the choice of upwind and 
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downwind points. This technique has been developed by one of the authors15 to the first-order 
accuracy and extended by Bristeau et all6 (see Remark 3). Our scheme approximates the 
convection term to third-order accuracy when upwind and downwind points coincide with 
nodal points. In this sense we may regard it as an extension to the finite element method of the 
third-order upwind finite difference approximation developed by Kawamura et aL6 For the time 
integration we employ the forward Euler method and use the consistent discretized pressure 
Poisson procedure in solving the system of linear equations obtained. As a result, 
the size of the linear equations to be solved is reduced to the number of degrees of freedom of the 
pressure. 

In order to obtain better solutions of flow problems at high Reynolds numbers, the refined 
subdivision of boundary layers is no less important than the good approximation of the 
convection term. In the finite difference method, numerical grid generation" is often used to 
obtain body-fitting curvilinear co-ordinates. One of the advantages of the finite element method is 
its geometric flexibility. By using this advantage we can easily decompose the boundary layer as 
we like. In our method we do not need to use systematic grid generation. 

We present numerical results for two problems to show the efficiency of our scheme. One is the 
flow problem in a cavity at Re= loo0 and 1Ooo0. The other is the flow problem past a circular 
cylinder at Re= 10, 100, 1000 and 10000. In the latter problem we also discuss the influence of 
rounding errors, which are the cause of Karman vortex shedding. 

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

Let R be a bounded domain in R2 and T be a positive constant. Consider the incompressible 
Navier-Stokes equations in R x (0, T ) :  

au/at + (u - grad)u + grad p =( 1/Re)V2u +f, (14  

div u = 0, (1b) 
where u =(ul ,  u 2 )  is the velocity, p is the pressure, Re is the Reynolds number and f = ( f i ,  fi) is the 
outer force. Equations (1) are discretized in time as follows: 

(u"+ - u")/At + U" - grad u" +grad p" =( 1/Re)V2u" + f " ,  (24  

divu"+'=O, (2b) 
where At is a time increment and u", for example, denotes the value of u at time nAt. For the space 
discretization we employ the standard mixed finite element formulation, except for the time 
difference term and the convection term. For the time difference term we use the lumping 
technique. For the convection term we adopt a new upwind approximation (u" * grad u " ) ~  defined 
later. We note that the bilinear form 

Dij(U) = (aui /axj  + auj /axi ) /2  

is employed for the viscosity term in order to treat the stress boundary condition easily. We use a 
variant of the Hood-Taylor element, namely the Bercovier-Pironneau element.203 21  That is, we 
divide the domain into a union of triangles and further divide each triangle into four congruent 
triangles. Pressure p is approximated by the P1-element on large triangles and velocity u is 
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approximated by the P1-element on small triangles (see Figure 1). Throughout this paper we 
assume the triangulation is regular," i.e. the minimum angle condition. 

Equations (2) are reduced to a system of linear equations: 

(n?/At)u:" +BTp:=r", (34  

Bu;+ ' = s", (3b) 
where h;i is the lumped mass matrix, B is the 'divergence' matrix and rn and s" are known vectors. 
We can solve equations (3) by 

(BM -'BT)pj: = BM - 'r"-s"/At. (4) 
Matrix BM-'BT is an approximation of the Laplace operator and equation (4) is called the 
consistent discretized pressure Poisson equation by Gresho et al."' Velocity u:' ' is solved by 
equation (3a) afterwards. Thus the main part of the computation in our scheme is to solve a small- 
size system of linear equations (4) in pressure. We note that BA?'BT is a band matrix since 
matrix n? is diagonal. 

Proposition 1 

Equation (4) is uniquely solvable. 

Proofi Let qh be a solution of 
(Bn? -'BT)qh =o. 

Then we have 

which implies 

Since the Bercovier-Pironneau element satisfies the inf-sup condition under the assumption of 
regular t r i a n g u l a t i ~ n , ~ ~ . ~ ~  it holds that 

(h;i-'BTqh, BTqh)=O, 

BTqh = 0. 

1/BTqh/12a/lqhli, 
where fl  is a positive constant of the inf-sup condition. Hence we have 

qh = 0. 

Remark 1 

The above proof is valid even if the coefficient is dependent on h that is, the inf-sup condition 
is not necessary for the unique solvability. In fact, the unique solvability of equation (4) can be 

U P 

Figure 1. Bercovier-Pironneau element 
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proved without the assumption of regular triangulation. This proposition assures that no 
spurious pressure modes appear. 

POTENTIAL THIRD-ORDER UPWIND APPROXIMATION 

Let b : R -+ R2 be a given velocity and u : R + R be a scalar function. We derive the approximation 
(b-grad to (b *grad)u. Let 0 be a nodal point. Assume that b ( 0 )  does not vanish. We introduce 
the orthogonal local co-ordinate system (5,  q)  with origin 0 and unit t-vector b(O)/lb(O)I. Then 
the convection term is written as 

(b-grad u)(O)= Ib(O)lau/dt(O). (5 )  

We choose four points U, W, D and B on the t-axis such that U is an upwind point of 0 with 
respect to the flow b, W is a further upwind point, D is a downwind point and B is a further 
downwind point (see Figure 2). The method of practical choice of these points will be presented in 
the following section. Let h be the representative element length around 0. We set 

h =length OU. 

We denote by tp = t b  h the <-co-ordinate of P E { W, U, 0, D, B} (tb = 0,Cu = - 1). We approxim- 
ate du/a<(O) by the values of u at five points W, U, 0, D and B as follows: 

where 

and a is a non-negative parameter. 

Proposition 2 

Suppose that there exist positive constants ct  and c2 independent of h such that 

c I h G < B - t D ,  ( D - t O i  t O - < U ,  5 U - t W < c 2 h -  (7) 

Figure 2. Velocity b ( 0 )  and points W, U, 0, D and B 
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Then we have for every sufficiently smooth function u, 

(b * grad u)h(0)=(b - grad u)(O)+ alb(0)ld4u/dt4(0)h3/4! + O(h4). 

309 

(8) 

Pro05 We set yp = y j  + y g ,  where 

Then we have 

C 

C yiu(P)/h=ah3u[W,U,0,D,B] =ah3d4u/dt4(0)+O(h4), 

7; v(P)/h = dP4/dt (0) = du/a t  (0) + 0 (h4), 
PEIW, U,O, D,B) 

P E IW, U,O, D, B) 

where P4(5; u(P), P = W, U, 0, D, B) is the fourth-order Lagrange interpolation and 
u[W, U, 0, D, B] is the fourth-order divided difference. Hence we obtain (8). 

Remark 2 

(i) When a = 0, equation (6) is the fourth-order central approximation. 
(ii) Equation (6) becomes the third-order Leonard-type4 upwind approximation using W, U, 0 

and D when 

We have reported this case briefly in a previous paper.” 

0 and B when 
(iii) Equation (6) becomes the third-order Leonard-type4 upwind approximation using W, U, 

a= - n (tb-tb). (10) 
Q + D ,  0 

(iv) Suppose the case where W, U, 0, D and B are located uniformly; that is, the lengths of BD, 
DO, OU and UW are equal to h. Then (6) becomes the third-order Kawamura-type approxim- 
ation when a=6. Note that or=2 in (9) and a = 4  in (10) when W, U, 0, D and B are located 
uniformly. 

(v) or is the parameter which stabilizes the scheme. From (8) we set a’=a/4!. We choose a’ 
between 0 and a (i.e. a€  [O, 61) from the above discussion. 

Remark 3 

(i) In a previous paperI5 we presented a first-order upwind finite element approximation to (5): 

b (0 )  ’ grad Oh( To), (1 1) 

where To, the upwind element of 0, is defined as an element such that 0 is a vertex of To and the 
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half-line starting from 0 with direction - b(0 )  crosses To. Since we use the piecewise linear 
element, grad oh( To) is constant and (1 1) is equal to 

1 b(o)I(uh(o)- uh(U))/h. (12) 
Hence (6) is a higher-order extension of (1 1). 

(ii) Bristeau et ~ 1 . ' ~  extended (12) to approximate (5) by three points, W, U and 0 (the choice of 
W is a little different). Then the main truncation error in (8) becomes const. x Ib(0)li33u/i3<3(O)hz. 

In the weak formulation we approximate the trilinear form 

where P runs over all nodal points and mesD, is the measure of the barycentric domain* 
D, around P. Since we use the piecewise linear element, the values of uh at upwind or downwind 
points are obtained by the linear interpolation of nodal values. Therefore (13) is not of third-order 
accuracy in general, but it is when these points are located suitably, e.g. when they coincide with 
nodal points. In the neighbourhood of the boundary where we cannot find the points W or B, we 
employ the first-order upwind approximation (12) or the Leonard-type upwind approximation (9) 
in place of (6). 

CHOICE OF UPWIND AND DOWNWIND POINTS 

We denote by 9 the collection of all vertices and all (closed) sides of (small) triangles. Let F be an 
element in 9. We denote by g ( F )  all elements in 9 which have no intersection with F: 

V ( F ) =  { A E ~ ; ;  A n F = @ ) .  

Let P be a point on the <-axis. We denote by I-(P) the half-line starting from P in the 
-<-direction. The upwind point U(<,, 0) is defined by 

<,=max{<; P(< ,O)EFn1_(0) ,FEg(O)} .  

We denote by F ,  the element in q(0) including U: 

u E F ,  E V(0). 

Such an element can be found uniquely unless U E 9, where we set FU = U.. The other upwind 
point W(tW,  0) is defined by 

tW =max {<; P(<, O)E F n I -  (U), F EV( F , ) )  . 
The downwind points D and B are defined as upwind points U and W corresponding to - b (0). 

By virtue of the assumption that the subdivision is regular, we have: 

Proposition 3 

The upwind and downwind points chosen as above satisfy relation (7). 
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NUMERICAL RESULTS 

We solve two model flow problems. In the following the outer forcef=O and the initial value 
u = 0. The boundary condition is shown in each problem. We solve the Navier-Stokes equations 
evolutionally by (3). 

u =  i l , O )  

Q 

Flow in a cavity 

The problem is explained in Figure 3. Figure 4 shows the division of the domain. Each side is 
divided into 24 non-uniform intervals (the minimum element size of pressure is h,-0014) and the 
total number of elements (of p )  is 1152. We choose the value c( given in (9). The time increment At 
is 00075 in the case of Re = 1000. This value was selected experimentally and also on the basis of 
the CFL condition by considering that the phenomena are convection-dominated for high- 
Reynolds-number flows. In the case of Re= loo00 we decreased the time increment a little, 
At=0.005, since the solution had not become stationary. With this At the solution became 

3 

I1 
J 

h 
I 

X I  
u = o  

Figure 3. Flow in a cavity 

Figure 4. Division of the domain 
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almost stationary but a slight oscillation remained. Figures 5 (Re= 1000) and 6 (Re= lOO00)  
show the streamlines of the stationary solution (almost stationary solution for Re= lOO00) and 
the graphs of u1(0.5,.). In these figures we compare our results with others obtained by: 

(a) Ghia et 
(b) Nallasamy and P r a ~ a d , ~ ~  FDM with first-order upwinding, 50 x 50 
(c) Takemoto et a/.,’ FDM with third-order upwinding, 100 x 100 
(d) Kondo et FEM with third-order upwinding, 40 x 40 (Re = lOOO), 44 x 44 (Re = 10 OOO) 
(e) ourselves, FEM with first-order upwinding (ll),  16 x 16 (a result computed this time in 

FDM without upwinding, 128 x 128 (Re= 1000), 256 x 256 (Re= 10000) 

order to be compared with the present scheme) 

where N x N means that each side is divided into N segments. 
We can observe the good agreement between our results and those obtained by Ghia et al. 

Note that we used a relatively rough mesh division. We omit the result of the FEM with first- 
order upwinding in Figure 6 since it is almost the same as in Figure 5. This means that the 
dependence of first-order upwinding on the Reynolds number is not very good. On the other 
hand, as seen from Figures 5 and 6, the present scheme produces solutions having a good 
dependence on the Reynolds number. 

Remark 4 

Our subdivision is 24x24 in p ,  which amounts to 48 x48 in u. As explained, the main 
computation of our scheme is to solve the system of linear equations (4) in p .  Therefore it may not 
be so unfair to take N = 24 for our subdivision in comparing the results with the others. 

+pI - p r e s e n t  

x x x 1st-order upnind E M  Ji 
I e 

0 1 u  

Figure 5. Streamlines and graph of ~ ~ ( 0 . 5 ,  *); Re= lo00 
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X A  

- P r e s e n t  

+ A  A - T A K E M O T 0  e t  a l .  

0 0 0 G H  I A e t  a l .  

0 1 u  

Figure 6. Streamlines and graph of u , ( 0 5 ,  .); Re= loo00 

Flow past a circular cylinder 

The problem is explained in Figure 7, where 
2 

ti= C { -phi j+(2 /Re)Di j (u) )nj ,  i=  1,2, 
j =  1 

and n = ( n , ,  n 2 )  is the unit outward normal to the boundary. At the origin there exists a circular 
cylinder with unit diameter. The computational domain is [ - 7.5, 22.53 x [ - 7.5, 7.51. The total 
number of elements (of p) in Figure7 is 2334 and the minimum element size of velocity is 
h, 1: 0028. We set a' = 0.08. We chose At = 0.002 (Re  = 10) and At = 0.01 (Re  = 100) in considera- 
tion of the finite difference stability condition of the heat equation, At < Re h,2/4, since the 
phenomena are diffusion-dominated for low-Reynolds-number flows. Figures 8 (Re = 10) and 9 
(Re = 100) depict the time histories of drag coefficient CD and lift coefficient C,. C ,  is nearly zero 
in Figure 8.  At Re= 10 a stationary solution was obtained (Figure 10). At Re= 100 we observed 
Karman vortex shedding (Figure 11). For the computation at higher Reynolds numbers we used 
more refined subdivisions. The subdivision for Re = lo00 is shown in Figure 12. The total number 
of elements (of p )  is 4320. The nodal point number (of p )  on the cylinder increased to 64 from 48 
and the boundary layer was subdivided into smaller elements. h,=0.011 and it is attained as the 
lengths in the radial direction of elements nearest to the cylinder. The subdivision for Re= 100oO 
was similar to the one for Re= 1000 except for the location of nodal points; that is, the total 
number of elements and the topology of the subdivision were same but the layer was subdivided 
more finely by moving the nodal points towards the surface of the cylinder and h,=0.003. Note 
that the decreasing rate of h, is nearly equal to l / , / (Re ) ,  the theoretical decreasing rate of 
boundary layer thickness. We chose At = 0.01 (Re  = 1000) and At = 0.0075 (Re = 10 OOO) in 
consideration of the CFL condition (see also Remark 5 below). At Re = 10 OOO we increased the 
value of a' to 0.12 since the solution had diverged for a'=O.O8. At present we have not obtained 
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1 .5 -  

1.0 

3 t  
10 15 

c L  
5 0.0 

c D  
- 

Figure 8. Time histories of C, and C,; Re= 10 

0.51 

t 0.0 

-0.5 

Figure 9. Time histories of C, and C,; Re= 100 
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Figure 10. Stationary solution; Re= 10 

the critical value of CI’. To find it is an open problem. Figures 13 (Re=1000, a’=008) and 
14 (Re= 10000, ~1‘=0.12) depict the time histories of C, and C,. In both cases we observed 
Karman vortex shedding. Figure 15 (Re= 10000) shows the streamlines at a time t=59.25. 
The detailed structure near the cylinder is seen in Figure 16. The qualitative agreement between 
the results of the present computation and experiment** is good. 

Remark 5 

When Re = 10 000, At does not satisfy the CFL condition for the above h, and the representat- 
ive velocity. However, near the surface of the cylinder the minimum element size in the angular 
direction is about 0.016. Therefore, if the velocity in the radial direction in the layer is not too 
large, the CFL condition will be satisfied. In this subdivision the aspect ratio of the angular 
direction to the radial direction of elements near the cylinder becomes quite large (about 11). This 
ratio is not very desirable from the viewpoint of regular triangulation. In the subdivision at  
Re= 1000 the ratio is about 3 near the cylinder and about 4 in the whole domain. 

INFLUENCE O F  ROUNDING ERRORS 

In the computation of flow past a circular cylinder, the scheme as well as the mesh division and 
the input data were symmetric with respect to the x,-axis. Therefore, if all computations had been 
done exactly, the solutions should have been symmetric at any time. However, we obtained 
asymmetric solutions (Karman vortex shedding) at Re= 100, loo0 and 10000. This must be 
caused by rounding errors in the process of computation. In order to examine this influence, we 
computed the same problem (Re= 100) in double-precision. Figure 17 shows the time histories of 
C, and C ,  by the single-precision computation as well as the double-precision computation. 
From this figure we see clearly the difference in time when the stable Karman vortex shedding 
appears. In single-precision each operation includes greater rounding errors and the Karman 
vortex shedding appears earlier. The states of Karman vortex shedding in both computations are 



Figure 11. (Continued) 



UPWIND FINITE ELEMENT SCHEME FOR HIGH-Re FLOWS 317 

Figure 1 1 .  Karman vortex shedding; Re = 100 

stable and almost identical except for the phase lag. Figure 18 shows the variations of velocity 
and pressure at  each step: 

log, o(ll U" + - u" II IUAt),  log, o( II P"' - P" II lPAt), 

where U and P are representative velocity and pressure and 11 . ( 1  denotes the maximum norm. 
Initially the variations decrease and the solutions seem to converge to a stationary solution, 
especially in the double-precision computation at about t = 200. However, the variations increase 
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Figure 12. Subdivision of the domain for higher Reynolds numbers 

Figure 13. Time histories of CD and CL; Re= lo00 

gradually afterwards and finally the Karman vortex sheddings appear. Figure 19 depicts the time 
history of log,,(C,(. Setting 

L(t)=max{)C,(t')J; O < t ' < t } ,  

we observe that the quantities logloL( t )  are almost linearly increasing, except for short initial 
time intervals in both computations, even while the variations in Figure 18 are decreasing. From 
Figure 19 we can read off 

L,( t )  100.023'-4'1 , Ld( t )  N 100'023'- 13.8 
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t 

Figure 14. Time histories of C ,  and C,; R e =  loo00 

319 

Figure 15. Streamlines; Re= loo00 

Figure 16. Detailed streamlines of Figure 15  
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- 

2 . 5 r  

s t n g 1 c  precision d o u h l e  p r e c i s i o n  

0.5 

0.0 

-O.EiL 

Figure 17. Time histories of C ,  and C ,  by single- and double-precision computations; Re= 100 

- 
0 100 200 300 400 500 600 t 

0 

Figure 18. Variations of velocity and pressure; Re = 100 

where the subscripts ‘s’ and ‘d’ mean single-precision and double-precision respectively. Each L( t )  
increases exponentially from the ‘initial’ disturbance, the size of which is dependent on the 
precision of computation. The increases stop when stable Karman vortex sheddings appear. Thus 
we see that C ,  is a suitable quantity to characterize this phenomenon. 

At Re= 10 the symmetric solution is stable. The disturbance caused by rounding errors does 
not grow and we obtain a stationary symmetric solution. 

CONCLUDING REMARKS 

We have presented a new upwind finite element scheme for the incompressible Navier-Stokes 
equations. It has the ability of approximating the convection term to third-order accuracy when 
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0 100 200 300 400 500 600 

Figure 19. Time histories of log IC,( by single- and double-precision computations; R e =  100 

upwind and downwind points are located suitably. The extension to three-dimensional problems 
is straightforward. The subdivision along the body, especially in the boundary layer, is re- 
commended in order to obtain good numerical results. In the finite difference method one often 
uses the body-fitting co-ordinate system (called the generalized co-ordinate system) and solves the 
transformed Navier-Stokes equations on the grid of the transformed domain. On the other hand, 
we can realize such body-fitting decomposition by virtue of the freedom of the finite element 
subdivision and we do not need to introduce the generalized co-ordinate system. Therefore we 
have the advantage that the Navier-Stokes equations do not change from their original form. 

Numerical results for model problems indicate the efficiency of this scheme for flow problems at 
high Reynolds numbers. Quantitative analysis, such as finding the critical Reynolds number of 
flow past a circular cylinder, is being investigated. We have also developed an efficient algorithm 
for the search of upwind and downwind points. These results will be reported elsewhere. 
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